

YMCA Awards

Level 3 Nutrition to support physical activity 2018

Level 3 Nutrition to support physical activity

Basal metabolic rate (BMR)

BMR is an individual's basic requirement for energy at rest

Calculating BMR

Schofield calculation

Men:

10 – 17 years	BMR = 17.7 x W + 657	SEE = 105
18 – 29 years	BMR = 15.1 x W + 692	SEE = 156
30 – 59 years	BMR = 11.5 x W + 873	SEE = 167

W	o'	m	e	n	:
	_		_		•

10 – 17 years	BMR = 13.4 x W + 692 SEE = 112
18 – 29 years	BMR = 14.8 x W + 487 SEE = 120
30 – 59 years	BMR = 8.3 x W + 846 SEE = 112

Key:

W = Body weight in kilograms

SEE = Standard error of estimation

Physical activity factor (PAF)

- BMR x 1.4 inactive men and women (this applies to most people in the uk
- BMR x 1.6 moderately active women
- BMR x 1.7 moderately active men
- BMR x 1.8 very active women
- BMR x 1.9 very active men

Example 1

Female, 28 years old, 65kg, moderately active

$$BMR = 14.8 \times 65 + 487 = 1449 kcal$$

PAF = 1.6

Daily energy requirement $= 1.6 \times 1449$

= <u>2318kcal</u>

Example 2

Male, 54 years old, 95kg, inactive

$$BMR = 11.5 \times 95 + 873 = 1966kcal$$

PAF = 1.4

Daily energy requirement $= 1.4 \times 1966$

= <u>2752kcal</u>

Fats/Proteins/Carbohydrates

Fats

 $2752 \times 35\% = 963$ kcal

Proteins

 $2752 \times 15\% = 413$ kcal

Carbohydrate

 $2752 \times 50\% = 1376$ kcal

Fats/Proteins/Carbohydrates

Fats:

$$963 \div 9 = 107g$$

Proteins:

$$413 \div 4 = 103g$$

Carbohydrate:

$$1376 \div 4 = 344g$$

YMCAawards